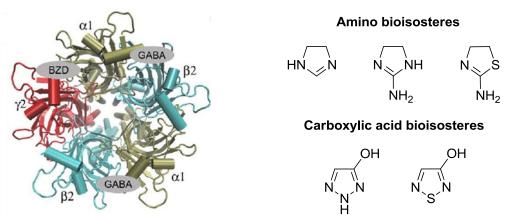
Development of innovative GABA_A receptor ligands using a bioisosteric approach

Alessandro Giraudo

Department of Drug Science and Technology, University of Turin Department of Drug Design and Pharmacology, University of Copenhagen a.giraudo@unito.it

Tutors: Prof. Marco Lolli; Prof. Bente Frølund


 γ -aminobutyric acid (GABA) exerts the main inhibitory function in the central nervous system (CNS) by activating the GABA_A receptors (GABA_ARs) and GABA_B receptors. GABA_ARs are ligand-gated ion channels composed by five subunits assembled around the chloride ion conducting pore (Figure 1, left).

Several subunits (e.g. α_{1-6} , β_{1-3} , γ_{1-3} , δ , ρ_{1-3}) assemble together building at least 26 native and mainly heteromeric GABA_AR subtypes.¹ Different regional distribution and functional properties of the individual subtypes suggest involvement in a wide range of functions throughout the CNS.² Taking this knowledge, it would be important to disclose the function of each GABA_AR subtypes and investigate the possibility of using orthosteric ligands as therapeutic agents.

The overall aim of this project is the development of new GABA analogues targeting GABA_ARs subtypes. For this purpose, a bioisosteric approach at the carboxylic acid and amino moieties of GABA was evaluated using a diverse series of five membered heterocycles (Figure 1, right).

The synthesis, the pharmacological and physicochemical characterization of novel heterocycles in the GABA_AR area were developed. Dihydroimidazole and 2-amino analogues of dihydrothiazole and dihydroimidazole were chosen and shown to translate into valid novel amino bioisosteres in the GABA_AR area. On the other hand, hydroxy-1,2,5-thiadiazole and 4-hydroxytriazole were developed as carboxylic acid bioisostere for the GABA_ARs.

These novel heterocycles were successfully applied as bioisosteres in the GABA_AR area and showed interesting and distinctive pharmacological properties for the GABA_ARs.

Figure 1. Left: schematic top view of GABA_AR. Right: structures of novel amino and carboxylic acid bioisosteres in the GABA_AR setting.

References

¹ Olsen, R. W.; Sieghart, W., International union of pharmacology. LXX. Subtypes of γ -aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. **2008**, 60, 243-260.

² Petersen, J. G.; Bergmann, R.; Krogsgaard-Larsen, P.; Balle, T.; Frolund, B., Probing the Orthosteric Binding Site of GABAA Receptors with Heterocyclic GABA Carboxylic Acid Bioisosteres. Neurochem. Res. **2014**, 39, 1005-1015.